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 INTERNATIONAL ECONOMIC REVIEW

 Vol. 18, No. 1, February, 1977

 THE DEMAND FOR MONEY DURING HYPERINFLATIONS

 UNDER RATIONAL EXPECTATIONS: I*

 BY THOMAS J. SARGENT'

 1. INTRODUCTION

 This paper proposes methods for estimating the demand schedule for money

 that Cagan used in his famous study of hyperinflation [3]. Wallace and I [8]

 pointed out that under assumptions that make Cagan's adaptive expectations
 scheme equivalent with assuming rational expectations, Cagan's estimator of

 o, which is the slope of the log of the demand for real balances with respect to

 expected inflation, is not statistically consistent. This is interesting in light of a

 paradox that emerged when Cagan used his estimates of x to calculate the sus-

 tained rates of inflation associated with the maximum flow of real resources

 that the creators of money could command by printing money. This "optimal"

 rate of inflation turns out to be -l/oc. For each of the seven hyperinflations,

 the reciprocal of Cagan's estimate of -a turned out to be less, and often very

 much less, than the actual average rate of inflation. The data are shown in

 Table 1, which reproduces a table of Cagan's. Cagan's estimates imply that thc

 creators of money expanded the money supply at rates that far exceeded the

 sustained rates which maximized thc rcal revenues they could obtain. A natural

 TABLE I

 (1) \~~(2) (3) _ .

 Austria .117 12 47

 Germany .183 20 322

 Greece .244 28 365

 Hungary I .l15 1 2 46

 Hungary 11 .236 32 19,800
 Poland .435 54 81
 Russia .327 39 57

 Column (1)=- 1/a (continuous compounding), rate per month that maximizes
 revenue of money creator.

 Column (2) =(e1a -1) 100 (neglects compounding).
 Column (3)=average actual rate of inflation per month
 Source: Cagan's Figure 9, [3, (81)].

 * Manuscript received August 4, 1975; revised March 17, 1976.

 1 Research on this paper was supported by the Federal Reserve Bank of Minneapolis, which

 doesn't necessarily endorse the conclusions. Helpful comments on an earlier draft were received

 from Christopher Sims, Thomas Turner, John Geweke, Milton Friedman, Jacob Frankel,

 Robert E. Lucas, Jr., and Rusdu Saracoglu. Rusdu Saracoglu performed the calculations

 using a computer program that he wrote for estimating bivariate mixed moving average, autore-

 gressive models.
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 60 THOMAS J. SARGENT

 first thing to consider in explaining this apparently irrational behavior by the

 creators of money is the possibility that it is a statistical artifact, namely, a con-

 sequence of using bad estimates of o,.

 This paper aims to complete a task begun by Wallace and me [8], namely,

 the analysis of Cagan's model of hyperinflation under circumstances in which

 Cagan's "adaptive" scheme for forming expectations of inflation is equivalent

 with expectations that are "rational" in Muth's sense [6]. The model is a

 very simple simultaneous-equations model of the inflation-money creation process,

 one equation of which turns out to be identical with Cagan's simple portfolio

 equilibrium equation. As Wallace and I have argued, Cagan's use of single
 equations methods exposed him to the possibility of severe simultaneous-equations

 bias. The present paper uses the full information maximum likelihood estimator

 to obtain a consistent estimator of Cagan's model. It also obtains an expression

 for the statistical inconsistency of Cagan's estimator for his model under the cir-

 cumstances in which adaptive expectations coincide with rational expectations.

 One way of justifying imposing rational expectations on Cagan's model is that
 it enables one to specify a complete model of the inflation-mnoney creation process
 in a very economical way. This is a virtue, since the time series from the hyper-

 inflations are too short to permit estimating complicated parameterizations.

 But a more important reason for using the hypothesis of rational expectations to

 complete Cagan's model is that doing so delivers an econometric model that is

 seemingly consistent with the exogeneity (or "causal") structure exhibited by

 the money creation-inflation process during the seven hyperinflations studied

 by Cagan. Empirical tests by Wallace and me typically indicated substantial

 evidence of feedback from inflation to money creation, with markedly less feed-
 back from money creation to inflation. Cagan's model under rational expecta-

 tions predicts a particular extreme version of such a pattern: it predicts that

 inflation "causes" (in Granger's sense) money creation with no reverse feedback

 (or "causality") from money creation to inflation. Cagan's model with rational

 expectations thus seems to provide one way of explaining the Granger-causal

 structure exhibited in the data.

 Cagan's paper is rightly regarded as one of the best pieces of empirical work
 ever done in economics. His model and his estimation method have been applied

 with apparent success to a number of additional countries experiencing high

 inflation rates, but rates falling short of those characterizing hyperinflations.2

 The key substantive conclusion that has been drawn from Cagan's study, and those

 subsequent studies as well, is that even in the apparently chaotic conditions of

 rampant inflation it is possible to isolate a stable demand schedule for money

 having real balances varying inversely with the expected rate of inflation. In

 the light of the results of this paper, that conclusion must be severely modified.

 First, it is shown below that under conditions that make Cagan's model equivalent
 with assuming "rational" expectations, the slope parameter e is not econometrical-

 ' Among such studies are some of those in Mcisclman [5].
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 THE DEMAND FOR MONEY 61

 ly identifiable. To identify or requires imposing a restriction on the covariance

 of the disturbances to the demand for money and to the supply of money. Neither
 economic theorizing nor intuition seems to provide a ready restriction on that

 covariance. Proceeding on the "neutral" assumption that that covariance is

 zero, one can extract estimates of a. But even then, the estimates of a are charac-
 terized by large standard errors.

 From a technical point of view, this paper is an exercise in applying vector time

 series models. The key references are Granger [4], Sims [9], Wilson [10],
 Porter [7], and Zellner and Palm [11]. The model studied here is an interesting
 one from the point of view of the vector time series model, since it is one in which
 in-flation "causes" money creation in Granger's sense, although these two series
 are supposed to be perfectly in phase, so that neither one "leads" the other. The

 model thus provides an example that illustrates the difference between Granger's
 causality and simple notions of the lead of one series over another. The model

 is also interesting because it illustrates the very important difference between

 Granger causality and a separate notion of causality often used by economists,
 namely, that of invariance with respect to an intervention. The present model
 predicts that money "causes" inflation in the sense that a given change in the
 stochastic process or "feedback rule" governing the money supply will produce
 a determinate change in the stochastic process for inflation. The stochastic
 process for inflation is an invariant function of the stochastic process governing

 money creation. In Cagan's model with rational expectations imposed, inflation
 Granger-caulses money creation with no reverse Granger causality from money to
 inflation because the system is operating tinder a particular money supply rule
 that in effect prevents the money supply 1'rom being of any use in predicting sub-
 sequent rates of inflation. If there is a change in monetary regime, that is, a
 switch in the money supply rule, the economic model predicts that the Granger-
 causality structure of the money-inflation process will change.

 2. THE MODEL

 Cagan's model of hyperinflation builds on a demand schedule for real balances
 of the form

 ( I) lilt - Pt =- eart + Utah a < ?

 where in is the log of the money supply (which is always equal to the log of the

 money demand); p is the log of the price level; 7;, is the expected rate of inflation,
 i.e., the public's psychological expectation of Pt+ 1 - Pt; and ut is a random variable
 with mean zero. I have omitted a constant term from (1), though one would be

 included in empirical work. Cagan assumed that ;t was formed via the adaptive
 expectations scheme

 Tt =I - (Pt-Pt-,)
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 62 THOMAS J. SARGENT

 or

 (2) 7t = -

 where xt =pt - pt the rate of inflation, and where L is the ltag operator defined
 by L'x1t=Xt-,1

 tender rational expectations we require theat

 (3) 7rt=EfXt+I

 where Etxt+ 1 is the mathematical expectation of xt+ , conditional on information
 available as of time t.3 Using (3) and recursions on (1), it is straightforward to
 show that under rational expectations we must have4

 (4) 7t = Etxt+ ( ) Etflt+j

 1! j ~, ( l _ )'(Etu+j -Etut+j-,)

 where ,clt= Mt-n1_ - tthe percentage rate of increase of the money supply. Equa-
 tion (4) characterizes the (systematic part of the) stochastic process for inflation
 as a function of the (systematic part of the) stochastic process for money creation.
 The model asserts that (4) is invariant with respect to interventions in the form

 of changes in the stochastic process governing money creation. In this sense,
 since changes in the stochastic process for money creation are supposed to produce
 predictable changes in the stochastic process for inflation, money "causes" in-
 flation.

 For Cagan's adaptive expectation scheme (2) to be equivalent to rational

 expectations we require:

 (5) 11~2 xt - 1 [ E (- j )' Ett+j

 e y ad s c en cdIto f (Et ut+j - EtUt+j- a

 The necessary and sufficient conditions for (5) to hold for all oc and all t is

 3 I assume that the information avilable consists (at least) of observations of current and

 past Pe's and current and past x's. Thus Etx,+=- E[x,+1 ltPt, Pt,-, Xt, Xtl,...]. Similarly,
 where zt is any arbitrary random variable, I will write Etzt+1 for E[zt+l I pt. n, I-l.Xt, Xt-i,..]-

 4 Substituting (3) into (1), first differencing, and shifting the time subscripts forward one
 period gives

 - t+,-Xt+l = aEt+lxt+2 - axt+l + (Ut+l - tt)

 Taking expectations conditional on information available at time t gives

 Etxt+l = l --Ett+ - a Ex+2 - (Etut+l - Etut)

 Recursion on the above difference equation shows that equation (4) is indeed a solution to that
 equation.
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 THE DEMAND FOR MONEY 63

 E PI+- Etfu t j- _ -_L t

 For an arbitrary p process, there exists a disturbance process lit satisfying the above

 restriction, one in which Et(ItJ-l "t-j- ) is a complicated function of lagged
 x's and lagged ji's. From my point of view, however, the most frulitfull conditions
 to impose are the following two that aire sLufficient (tholigh clearly not necessary)
 to satisfy (5). The first condition is

 (6) t = lit " + t

 where PI, is a serially uncorrelated random term with mean zero and variance o2
 I assume that E[iiIjEt-,, JUt-2,... t, Xt-2 ....]=. According to (6), it takes
 a random walk. Equation (6) implies that

 Et=t+j tt, i ? 0

 which implies that

 Etut + j - Ettit + = 0 for all j > 1.

 The second of my pair of sufficient conditions for (5) is

 (7) Et +j = Edit +1 for j > 1,

 so that a constant rate of money creation is expected to occur over the entire future.
 Assuming (6) and (7) then implies that the appropriate version of (5) is5

 ( __A___)t = Et~p1 t _ t ( -I a )i-1

 or

 (8) 1 - XL XXt E= t+1

 A process that satisfies (8) is

 To see that process (9) satisfies (8), write (9) as

 ,t+l = (1- )Xt+l + (I _ i) Xt + St+l -

 Taking expectations conditional on information available at t, we have

 Etit+l =(1-)Etxt+l + (I _ i) -
 1 - 2L

 But Etxt+1= 1l ,2 xt, so that we have

 Eif+ ((1 )( 1- it j Xt~~~~i=l L-

 as required.
 Etptll f - 2-A-) X ) 2

 as required.
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 64 THOMAS J. SARGENT

 (9) Ilt = ( I ?-)Xt +et(-Etxt+ I +et)

 where et is a serially uncorrelated random term with mean zero and variance a ,
 and that satisfies

 E(6tlxt- , Xt2,..., [it- 1 It-2-") = 0?

 According to (9), the rate of money creation equals the expected rate of inflation

 plus a random term. Equation (9), which has been arrived at in a purely mechani-
 cal fashion by pursuing the implications of the assumption that Cagan's adaptive
 expectations scheme is rational, is nevertheless of interest as an hypothesis about
 the government's behavior. For example, if the government is creating money
 to finance a large part of a roughly fixed rate of real government purchases, then
 there is a presumption that inflation and expected inflation will feed back into

 money creation, an implication with which (9) is consistent. Thus, when ;t
 increases, causing nmt-Pt to fall and thereby causing Pt to rise with a fixed mt,
 money depreciates in value, prompting the creators of money to increase the rate
 of printing money in order to maintain their command over the flow of real
 resources (see Sargent and Wallace [8]). Alternatively, equation (9) is com-
 patible with a "real bills" regime in which the monetary authority sets out to
 supply whatever money the public demands at some fixed nominal interest rate

 or some fixed real money supply. Equation (9) looks like a rule in which the

 monetary authority is attempting to peg the (rate of growth of the) real money sup-
 ply. During the German hyperinflation, German monetary officials in effect

 repeatedly acknowledged that they were operating tinder a real-bills regime,
 acknowledgments made in efforts to argue that their actions were not causing the
 inflation but were merely responses to it.

 The foregoing establishes that if equations (6) and (9) obtain, Cagan's adaptive

 expectations scheme is compatible with rational expectations and with the port-
 folio balance condition that he assumed. Under these assumptions, inflation
 and money creation form a bivariate stochastic process given by

 (10) tit- xt a( (- L)( i Lxt + 'it

 (9) tLt =(i'?X L)Xt + et.

 Equation (10) was obtained by first differencing (I) and then substituting for 1;t
 from (2) and for t-ut - _ from (6). The process (10)-(9) can be rewritten as

 (I1) (1- L)xt = (X + o(1- )( - XL)(et -qt)

 (12) (1 - L)ut = [(X + o(1 - ))-1(1 )(et - t) - Et- + Et.

 Equations (11) and (12) can be derived directly from (10) and (9); alternatively,
 see Sargent and Wallace for a somewhat different but equivalent way of deriving

 (11) and (12).
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 THE DEMAND FOR MONEY 65

 The statistical model (11)-(12) was constructed in a fashion to guarantee the

 condition

 __1 -A
 Etxt+ 1 - t

 a condition that implies that It does not Granger cause x. For the above equation
 states that once lagged x's are taken into account, lagged jt's don't help predict

 current x, which is Granger's definition of p's not causing x. It bears mentioning
 that the statistical model inherits its Granger-causal structure in large part from
 the particular conditions (6) and (7). The statistical model (11)-(12) is not in-

 variant with respect to an intervention in the form of a change in the money

 supply rule. Rather, it is equation (4) that is supposed to be invariant with res-

 pect to interventions in the form of changes in monetary regime. According to

 (4), changes in the Af process - which show up in changes in the (functions)

 Et?t +- result in changes in the systematic part of the inflation process, Etxt+ 1.
 Thus, one cannot expect the Granger-causal structure of the present model to

 survive interruptions in monetary regimes.

 3. THE BIAS IN CAGAN'S ESTIMATOR

 A convenient way to evaluate the (asymptotic) bias in Cagan's estimator is

 first to obtain a bivariate Wold representations for (zext, Apt). Write (11) and
 (12) as

 (13) (1 - L)xt = 4(1 - 2L)(ct - 't)

 (14) (1 - L)=t (1 - i)(?t-t) + (1 -L)t

 where 4 =(2 + ac(1-2))- ' Next decompose et according to

 et - E 1[atlEt 1t] + vt

 or

 ( 15) Et = P(et - Ct.) + L't

 where E[vtIct-1t]=0 and p is the regression coefficient of et on (et-qt). Sub-
 stituting (15) into (14) gives

 (16) (1 - L)p, = [4(1-2) + p(l - L)](et - 't) + (1 - L)vt

 Since vt is orthogonal to (at-at) and is serially uncorrelated by construction
 (recall that vt=et-p(et-qt), where et and qt are serially uncorrelated), it follows
 that (13) and (16) form a (triangular) bivariate Wold representation for (,Axt,

 zAet) with fundamental noises (et-qt) and vt. The- existence of a triangular
 bivariate Wold representation verifies that Ax is econometrically exogenous with

 6 The most readily accessible reference in economics on the multivariate Wold representation
 is Sims [9], especially the appendix.
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 66 THOMAS J. SARGENT

 respect to AJi and that Aly does not cause Ax in Granger's sense (see Sims [9]).
 It also makes it very easy to determine the population projection of zip on current
 and past Ax's, from which the asymptotic bias in Cagan's estimator is calculable.

 From (13) notice that

 (17) 1 I ( L x, .

 To obtain the projection of zip, against current and past (and future) Ax's, stabs
 stitute (17) into (16) to get

 (I - = =( X(1 ) + (I - L)p)o-qI (I ') -t + (1 - L)v, .

 Dividing through by (1 -L) gives

 /ij ( L + (1 -7L <' )xt + Vt

 (18) t (1 -i+ I))(1 L) )Xt + t).

 Recall from (13) that the vt process is orthogonal to the x process. Therefore,
 equation (18) gives the projection of fit on x. Substracting xt from both sides
 gives the projection of fit- xt against xt:

 ltm Xt , ( i -xvi)) - L) -((1 -L) -- lo

 or

 (19) lPt -Xt - + p ( 1 -( L) xt + v

 Operating on (19) with the "summation" operator (1 -L) I gives

 (20) int -t= [Pt + P(X + (l - M)] X + 4

 where it= t- I + vt. Equation (20) is the projection that Cagan estimated by
 (nonlinear) least squares regression. Notice that the residuals in (20) follow a

 random walk. It is noteworthy in this regard that the residuals in Cagan's

 and Barro's estimates of (20) were highly serially correlated, Barro reporting
 very low values for Durbin-Watson statistics.

 Now Cagan regarded the projection (20) as giving estimates of the equation

 (21) in, - (t - +Ut

 Least squares regression consistently estimates the parameters of the population

 projection (20) - only those parameters are not in general the same ones Cagan

 took them to be. Comparison of (20) with (21) shows that Cagan's estimator of

This content downloaded from 
�������������149.10.125.20 on Tue, 25 Jan 2022 15:58:37 UTC������������� 

All use subject to https://about.jstor.org/terms



 THE DEMAND FOR MONEY 67

 A is consistent but that his estimator of c is not in general consistent, and will

 obey

 plim(l A-)- [- + p(2 + ac(-i ))]

 which implies that

 (22) plim 0 = pa + ( p)

 Notice that if p=0, which will be true if e,=0 for all t, (22) implies

 plim. - 7- X

 which is an expression that Wallace and I derived and used. On the other hand,

 if q,=0 for all t, so that there is no noise in the portfolio balance schedule, from
 (I5) p 1, which with (22) implies

 plim =

 so that in this special case Cagan's estimator of a is consistent (and furthermore

 unbiased as it turns out, since vt =0 for all t).

 On the special assumption a,= g=0, we have

 - E(-, c (?, - ',)) - 2

 qt? -5) 2 2E 2 ft

 Alternatively, multiplying (I 5) by Qt, taking expectations, and rearranging gives

 P 6J2

 so that p is the regression coefficient of the residual v in the regression of (ji- x)

 against current and past (l-L)x on the disturbance in the demand for money.
 If v=q, then p = l.

 An estimate of p could be obtained in the following way, again on the special

 assumption E,, =0. Multiplying (15) by et, taking expectations and rearranging
 gives

 O GE

 The magnitude UV,/U2 is the regression coefficient of v on e. The residual v can
 be estimated by the residual in (the first difference of) Cagan's equation. The

 variable 8t can be extracted using the methods described below in Section 5.
 Then an estimate of p could be prepared using the above equation. It would be

 possible to use that estimate of p to correct Cagan's estimate of o by applying the
 formula

 plim = pc + (1 - ( i;.
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 68 THOMAS J. SARGENT

 The calculations in this section provide a useful exercise in interpreting systems

 in which one variable (x) is econometrically exogenous with respect to (is not

 Granger-caused by) another variable (pi). In such a system, as Sims's Theorem
 2 assures us and as the preceding calculations verify, the regression of pi on past,
 present, and future x's is one-sided on the present and past. Thus, there exist

 representations (models) of the (ji, x) process in which ,u and y-x are each one-
 sided linear functions of past and present x's with disturbances that are orthogonal

 to past, present, and future x's so that in these relations x is strictly exogenous

 with respect to ji and ju-x, respectively. But the representation in which x is

 econometrically exogenous with respect to (ft - x) - which is the relation that
 can be consistently estimated by least squares or generalized least squares is

 not the demand function for money, which is the structural relation we are inter-

 ested in estimating. The reason is that in the structural relation (21), u, is not
 in general orthogonal to the x process. The upshot is that finding that x is

 exogenous with respect to ,t-x does not guarantee that the one-sided [I-x on
 x distributed lag regression which is estimable by single equation methods cor-
 responds to the structural relation that we're interested in.

 4. A CONSISTENT ESTIMATOR

 Equations (I 1) and (12) form a bivariate first-order moving average process in

 (1 -L)pt and (t -L)x,. Assuming that the white noises et and 'h are jointly nor-
 mally distributed, the likelihood function of a sample of length T observations,
 t= ,..., T, generated by (11)-(12) can be written down. To apply the method of
 maximum likelihood, it is most convenient to write the model in its vector auto-

 regressive form. First note that from (9) we can write

 (23) ? Al - X

 Next from (11) we have

 (24) Et-sat = ( (41X _))(1 L)

 Substituting (24) into (23) and rearranging gives

 (25) qt = (t (I ? c(1- X))( )Xt

 In vector notation equations (23) and (25) can be written

 botsiesfhequao1 - L I t i
 Multiplying both sides of the equation by (l - L) .I where I is the 2x2 identity
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 THE DEMAND FOR MONEY 69

 matrix, gives

 (1- L)e,_ -(1I I1-L xt)

 (1 - L)qt__ _[I-i+( + a(I A))(1-L)] I - AL _yt-
 or

 L2-2 7 0 LV2) ff7 Alt At- l -(I + ( - . -lti

 +0? -iXt-10
 Let

 GOL 1]
 _(1+ a(1 - I))1

 Premultiplying the preceding equation by

 Go' ( + a(1-)
 _1 + 90 A + c41 - (-))

 gives

 et _-}t-1 _ _l + (-) - [t-1-
 G~~' - 2.IG~-At I1u .KPt2 G + X?i,-2I

 or

 (26) LaIt =t + (-2 liLxzli

 __2t -a2t- I- Jit J, + o( I ) i Pt-1

 where

 Computing

 G-11

 explicitly and rearranging the above equation gives

 (27) (1- 0 1X1\ Va ,t7 ,-

 ,)u =(K1 2 t.) 1 ) 2 - 2 I K]
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 70 THOMAS J. SARGENT

 Equation (27) is a vector first order autoregression, first-order moving average

 process. The random variables a,,, a2, are the innovations in the x and P pro-
 cesses, respectively. They are the one period-ahead forecasting errors for x,
 and pt, respectively. The a's are related to the E's and qI's appearing in the struc-
 tural equations of the model by

 (98) j art | T * X a I tEt-t

 a~~~t a t - R+al i (8t-I)+s
 (28) I__ _ _ _ _

 +aI - A

 Notice that the first equation of (27) can be written as

 (I - L)xt = (I - ;L)alt.

 St is straightforward to write this in the autoregressive form

 (29) xt=(jJAL)xl, +a1,.

 Since Et_1a1t=0, we have

 Et-,~= ( - L)Xt- *

 The second equation of (27) can be written as

 (I - AL)t = (I - -)xt- 1 + (I -L)a2t

 But from (29) we have (1 -A)xt1 =(l - AL)xt-(( - AL)a1t, which when substitut-
 ed into the above equation gives

 (1 - AL)yt = (1 - AL)xt - (I - AL)a1t + (I -AL)a2t
 or

 (30) pt = xt + a2t-a,,.
 From (30), it follows that

 (31) Et- ltt = Et- Ixt

 The triangular character of representation (27) demonstrates that it does not
 "cause" in Granger's sense (i.e., help predict, once lagged own values are taken
 into account) the variable x. That is, x is econometrically exogenous with

 respect to l.7 On the other hand, xt does cause the variable pt. Even stronger,

 the model implies that Et I fit=El. x= (Ilt-A)) , so that lagged lI's don't

 I Sims [9] proved the equivalence of Granger causality with econometric exogeneity.
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 THE DEMAND FOR MONEY 71

 help predict f once lagged x's are taken into account.8 That x causes yt in
 Granger's sense is not to be confused with x's "leading" ft in any National Bureau

 sense. On the contrary, according to (30), x, and pt are "in phase" with one
 another, neither one leading the other. (The phase of their cross-spectrum

 equals zero at all frequencies.) Evidence that x leads it would not be consistent
 with the model being studied here.

 The vector autoregressive, moving average process (27) is in a form that can

 be estimated by the maximum likelihood estimator described by Wilson [10].

 It is essential that the matrices multiplying current aI] and current [1t]

 both be identity matrices in order to apply the method, so that each ai process
 can be interpreted as the residual from a vector autoregression either for ft or xt.
 This is by way of getting things in a form in which the likelihood function of

 x t equals the likelihood function of a[to

 Let

 -a It
 a t= '

 _a2 t-

 and let Da be the covariance matrix of at,

 61 1 512
 Da= Fa = Ea.a

 U12 U22

 The likelihood function of the sample t = I,., T can now be written as

 (32) L(A, a II, a12, :22Ifit, Xt) = (27.T) IDaK T2 exp (- - E &Da a)

 Given initial values for (a10, a20) or equivalently for (et, 'o), and given a value of
 i, equation (26) or (27) can be used to solve for at, t= 1,..., T. (I will take

 a0o=a20 =0.)

 8 Wallace and I were mistaken when we asserted that "the system is one in which expectations
 of money creation could equally well be formed as a distributed lag of past rates of money
 creation," [8, (337)]. It is true that

 E[pt ! 1 -

 where r is a parameter that depends on the ratio of the variance of s8 to the variance of 7te
 However, in the model E[el8 I[', x..]vE[1t8~et ,.., xt ,...]. Instead, E[a1 lp,.., ]
 =E[1t lxt -1,...], which, of course, has a smaller prediction error variance than E[p, I ,
 The erroneous statements on page 337 of Sargent and Wallace [8] amount to an assertion that

 the Wold representation of the x, -Ie process contains only one noise, so that lagged values of
 either x or p exhaust all information in the past values of x and P useful for predicting either x
 or p. That is wrong, as the triangular Wold representation derived in Section 3 of this paper
 verifies. The upshot of all this is that it was not necessary for Sargent and Wallace to posit

 measurement errors in the money supply to rationalize the empirical observation that x causes It.
 That is already an implication of the system free of measurement errors.

This content downloaded from 
�������������149.10.125.20 on Tue, 25 Jan 2022 15:58:371976 12:34:56 UTC 

All use subject to https://about.jstor.org/terms



 72 THOMAS J. SARGENT

 Wilson notes that maximizing (32) is equivalent with minimizing with respect

 to A the determinant of the estimated covariance matrix of the at's,

 t= 1

 where the ats are determined by solving (27) recursively and so depend on

 The covariance matrix of the a's is estimated as

 T

 Da T- 1 EZaC
 t= 1

 evaluated at the value of i that minimizes (33). The resulting estimates are known

 to be statistically consistent (see Wilson [10]).
 Notice that a does not appear explicitly in the likelihood function, but only

 indirectly by way of the elements of Day namely 0-,I al m2 and 022. That this
 must be so can be seen by inspecting representation (27), in which XA appears

 explicitly but a does not. On the basis of the four parameters /X, al , U,2, and
 a22 that are identified by (27), i.e., that characterize the likelihood function (32),
 we can think of attempting to estimate the five parameters of the model a, i,

 aE, 52a, and aEE. Not surprisingly, some of the parameters are underidentified.
 In particular, while i and ol are identified, ci, o2 , and ae,, are not separately
 identified. To see that a and u,, are not identified consider the following argu-
 ment. From equation (28), we know that the identifiable parameters all U12,
 and U22 are related to the structural parameters oQ, j2, a21 U a, and i by

 (34) 51 1 C.S + <1 2) ) 3~ 2o tCl ,,EI)

 (36) (1 2) 1 E)

 (36) o2 ( i +c(11 'U) )2? ?I v)

 (2+ +1 ) 2X >o2-

 These equations imply

 (37) Ul 2 = ( 1 1 _ A)l(2 1

 (38) '12 = (I i)21 1 + U2 + 2( i (12 '7

 Do there exist offsetting changes in of and u,,, that leave both of these equations
 satisfied with alD l22, and o12 unchanged? That is, holding A and o2 constant,
 can we change of and oal in offsetting ways that leave all, 012' and 0-22 constant?
 The answer is yes, as can be seen by differentiating (37) and (38) and setting

 do-1t=daot=d 2=dX=do2=0:
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 THE DEMAND FOR MONEY 73

 (39) 0 = (I X)(2 + x(1 - ))-2(o- - g,, )dcx

 + (2 + od(1 - el = 0

 (40) 0 = 2(1 - 2)2(2 + cX4I - X))-2(o? - aEZ1)dlx

 + 2(1 - 2)(X + a(l - ),))-Id (Tl = 0.
 Dividing the second equation by 2(1 - ).) gives the first equation, which proves
 that if dJc and do,, obey equation (39), both equations (37) and (38) will remain
 satisfied. Thus, there exist offsetting changes in a and ox,, that leave the identifiable
 parameters o', U1 112, and 022 unaltered. It follows that o, and c are not se-
 parately identifiable. It is evident from (27) or (32) that 2. is identified. To see
 that o2 is identifiable, simply recall that rt obeys the feedback rule

 (9) I t=

 so that given 2, and samples of tit and xt, U2 is identifiable as the variance of the
 residual in the above equation.

 To proceed to extract estimates of cl it is necessary to impose a value of oel.
 I propose to impose the condition u, =O, so that shocks to the money supply
 rule and shocks to portfolio balance are unicorrelated. It is straightforward to
 calculate

 a t'[r Cell Goat

 - Ell 1 11 - Alt

 - ?2a + 2(1 -)U2 +- U ( -2 2)(1 -

 -- (2 . + o(1 O))r12 + 222

 (1-24(I (1 -24)oa (2 ).c1 ))U + (-223

 (l + Ct(j - ))2gf, - 2(1 + cc4 I ))5 12 + U22-

 Imposing o,, 0, we have

 0 = a El = (1 - ;,)(I + o(t - 2))u1 - (2 - + a(1 - 0))12 + U22,

 which implies that ca is to be estimated by

 (41) (= 1- 1 +( (I- +)o t l (1 - 2.)oM t O2 (1-2)(l-2)o I - U12)

 (72 2

 (1 - 2.)((l - 2)-1I 1 - U12)

 Let this estimator of oc be

 qg(l, 0)11, U712, U22) 9(O)
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 74 THOMAS J. SARGENT

 where O=(, all, a12, a22). Let 2o be the estimated asymptotic covariance
 matrix of 0. Then the asymptotic variance of o' will be estimated as

 var Q = (- Y0 )z(Q -)

 where (Og/l0)0 is the (1 x 4) vector of partial derivatives of g with respect to 0
 evaluated at the maximum likelihood estimates 0. The asymptotic covariance

 matrix of (R, ca1I, a12, a22) is given by

 ~TU2 0 0 0

 1 0 2a12 2a1 1 1 2 2aU22
 0 2a1 71a 2 a1 aI22 + 2 21 2022

 ~0 2aU2 2a1a2 2oa 2 0 12 2 15 2 U2 2 22 2

 where T A is estimated by

 Tor 2 a 2log L 7-I
 A 0 2a,2 Jo

 and where logL is the natural logarithm of the likelihood function (32). Notice
 that the maximum likelihood estimate of 2. is asymptotically orthogonal to the
 estimates a01, a12, a22. The preceding formula for 2o can be derived by apply-
 ing results of Wilson [10] and Anderson [1, (159--161)]. In the computations

 summarized below, the components aOF, I 12, and a22 were estimated by

 l 1f 1 071 20 T
 D a--= T-1 E at'j;

 712 T2 2 t=1

 the maximum likelihood estimator. The term

 (_ 82 log L

 was estimated numerically in the course of minimizing (33) to obtain the maximum
 likelihood estimates.

 It bears emphasizing that se is identifiable at all only on the basis of a restriction

 on uE 11 and that the estimator of a obtained by imposing au,, =0 depends sensitively
 on the covariance matrix of the errors in forecasting xt and uti from the past.
 The estimates of cx thereby obtained ought to be regarded as very delicate.

 5. AN ALTERNATIVE ESTIMATOR

 If it is assumed that aE =O, so that shocks to the demand for money and to the
 supply of money are uncorrelated, an instrumental variable estimator is available.
 From equations (30) and (29) we have that
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 Et-i 't- -Et = -- --) - '

 and that

 (42) Xt E-E- 1xt a1 lt ? + 2j p - 'it)

 (43) -t E~ xt ? - lit-E t - It+) ? t

 Notice that

 (44) (12t ))alt -t. ' =
 This suggests the following procedure. Estimate by maximLum11 likelihood

 the univariate first-order moving average process for Adx, i.e.,

 (1 - L)x. = (1 - L)alt

 w here a t=(2 + (I )) (ct - l) is whitete" This will yieldl consistent estimates
 of 2 and permit estimating the forecast errors. The forecasts Et-jx, can be
 estimated from the above equation as

 Et -- l Xt - I t 1 i1 - I.

 Use of (44) slows thlat estimates ofl c, can bc extracted according to

 (45) ' ' (lt Et -It) - (/I t-Et - I)( t X-I)

 On the assumption that 4tc is Uncorrelated witlit q, e is a valid instrumlellt for
 estimating equation (1): it is correlated with the regressors but orthogonal to

 the disturbance. Letting a, be the estimates of c, obtained by applying (45), 1
 propose fitting the first-stage regression

 x t= 1 }iVt
 i=O

 where the hatted values denote least squares estimates. Then Caganl's equation
 (1) would be estimated by applying (nonlinear) least squares to the second-stage
 regression

 (46) lnt -Pt = 0(l _ t + ltu x- ( ) t - X1)

 This procedure yields consistent estimates of a and 2 on the assu1m1ption that

 T

 plimT/- I atq = ?,
 T- cx t= I

 a condition that the orthogonality of ct and 'q goes a long way toward delivering.
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 76 THOMAS J. SARGENT

 6. TESTING THE MODEL

 Representation (27) shows that the model is a special case of the general vector
 first-order moving average, first order autoregressive process

 (27') xt FCi 2 [](xi ) (a )t (bII b )2 (atI)
 L1t LC21 C22j utJ ' a2t b2l b22 a2t-J

 where in (27) seven linear restrictions have been placed on the eight parameters

 (c11, c12, c21, c22, b11, b12, b21, b22) of (27') so that the systematic part of (27)
 only involves the single parameter A. The model (27) can be tested by relaxing
 some subset of the seven restrictions that were imposed on (27') to get (27), maxi-
 mizing the likelihood function under the less restrictive parameterization, and

 calculating the pertinent x2 statistic. Let L(xt, 4ut; 0o) be the maximum of the
 likelihood function under parameterization (27), which is Cagan's model under

 rational expectations. Let L(xt, At; 0, q) be the maximum of the likelihood
 function under (27') with q of the seven restrictions in (27) being relaxed. Then

 -2lIog( L(xt, t; 00) )

 is asymptotically distributed as x2(q). High values of the test statistic lead to
 rejection of representation (27). Below this test is implemented under several
 alternative relaxations of the restrictions on (27).

 7. EMPIRICAL RESULTS

 For Cagan's and Barro's data, respectively, Tables 2 and 3 report the estimates

 obtained using the maximum likelihood estimator and the assumption that a.

 TABLE 2

 ESTIMATES FOR CAGAN'S DATA (STANDARD ERRORS IN PARENTHESES)

 (X AND p ARE DEVIATIONS FROM RESPECTIVE MEANS)

 Country I_ _ a | 11 |1 ass 1 a
 GERMANY .6774 -5.973 .0625 .0158 .0091

 Oct '20-July '23 (.0533) (4.615) (.0147) (.0048) (.0022)
 AUSTRIA .7537 -.3113 .0385 .0148 .0085
 Feb '21 -Aug '22 (.0589) (1.5695) (.0119) (.0051) (.0026)

 GREECE .4587 -4.086 .0675 .0245 .0279
 Feb '43-Aug '44 (.0884) (2.970) (.0208) (.0109) (.0086)

 HUNGARY I .4183 -1.841 .0362 .0089 .0060

 Aug '22-Feb '24 (.0668) (.3978) (.0112) (.0038) (.0019)
 RUSSIA .6259 -9.745 .0524 .0138 .0205
 Feb '22-Jan '24 (.0728) (10.742) (.0145) (.0070) (.0057)

 POLAND .5364 -2.529 .0566 .0149 .0089
 May '22-Nov '23 (.0722) (.8562) (.0175) (.0059) (.0027)
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 THE DEMAND FOR MONEY 77

 TABLE 3

 ESTIMATES FOR BARRO'S I)ATA (STAND)ARD ERRORS IN PARENTHESES)

 (X AND p ARE DEVIATIONS FROM RESPECTIVE MEANS)

 Co0tv l E w 0a12 a 22

 AUSTRIl A l .6373 l --3.979 .0584 .0161 .0081

 Apr '21-Dec '22 (.0739) (2.805) (.0172) (.0056) (.0024)

 GERMANY .5921 -2.344 .1806 .0653 .0263

 Feb '21--Aug '23 (.0510) (1.223) (.0445) (.0165) (.0065)

 HUNGARY .4323 -1.705 .0280 .0071 .0038

 Nov '21-Feb '24 (.0559) (.2782) (.0072) (.0023) (.0010)

 POLAND .4790 -2.043 .0319 .0063 .0040

 Feb '22-Jan '24 (.0533) (.3537) (.0089) (.0025) (.0011)

 TABLE 4

 CAGAN'S ESTIMATES OF a, is TOGETHER WITH CONFIDENCE BAND FOR a.

 Country | (ai1' at)
 AUSTRIA .95 -8.55 -(4.43, 30.0)

 Jan '21-Aug '22

 GERMANY .82 -5.46 -(5.05, 6.13)

 Sept '20-July '23

 GREECE .86 -4.09 -(2.83, 32.5+)*

 Jan '43-Aug '44

 HUNGARY .90 -8.70 -(6.36, 42.2 d-):!
 July '22-Feb '24

 HUNGARY .86 -3.63 -(2.55, 4.73)

 July '45-Feb '46

 POLAND .74 -2.30 -(1.74, 3.94)

 Apr '22-Nov '23

 RUSSIA .70 -3.06 -(2.66, 3.76)

 Dec '21-Jan '24 --

 (ae,, Y,)--=90 percent confidence band calculated by Cagan using likelihood ratio
 method.

 ra,, actually exceeds right-hand figure in parentheses.
 Source: Cagan's Table 3, [3, (43)].

 TABLE 5

 BARRO S ESTIMATES OF i AND a

 Country I i , I __ _ _ _ _ _

 AUSTRIA .829 -4.09

 Jan '21-Dec '22 (-3.6, -4.5)

 GERMANY .824 -3.79

 Jan '21-Aug '23 (-3.3, -4.3)

 HUNGARY .861 -5.53

 Oct '21-Feb '24 (-4.6, -6.9)

 POLAND .709 -2.56

 Jan '22-Jan '24 (-2.1, -3.3)

 * 95 percent confidence intervals in parentheses beneath each estimate.
 Source: Barro, Table 3.
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 78 THOMAS J. SARGENT

 =0. Asymptotic standard errors are in parentheses beneath each estimator.

 Cagan's and Barro's estimates are reported in Tables 4 and 5 for convenience.

 For Cagan's data, the maximum likelihood estimator recovers estimates of cc

 that are in most cases characterized by large standard errors. In particular,

 for the important German case, a case in which Cagan had apparently estimated

 e with a tight confidence band, my estimate of a has a big standard error, one

 nearly as big as the point estimate itself. Evidently, the estimate of a is not

 statistically significantly different froom zero even at modest confidence levels,

 at least if we are willing to use the asymptotic (normal) distribution of the es-

 timates.9 For the Austrian and Russian cases, my estimate of a is smaller than

 its standard error. Only in the case of Hungary 1, and to a lesser extent in the

 case of Poland, is the standard error of c small relative to the point estimate of a.

 Interestingly enough, for Hungary I my estimate of o. of - 1.84 is much smaller

 in absolute value than Cagan's estimate of -8.70. The reciprocal of + 1.84

 is .54, while the average monthly rate of inflation in the Hungary I case was .46.

 In the case of Hungary I, my estimate of c suggests that the paradox with which

 I began this paper, the apparent tendency of creators of money to print money

 "too fast", was not present. For what it is worth, then, my estimate of cx for
 Hungary I tends to explain away the paradox. For the other countries, the

 point estimates do not explain away the paradox. However, in each case, values

 of c that would cause the paradox to disappear do exist within confidence intervals

 of two standard errors on each side of the point estimate of c. This suggests

 that perhaps the paradox ought not to be taken as having been seriously con-

 firmed since the estimates of ct on which it is based seem so shaky.
 Notice that my estimates of i are always lower than Cagan's. That is an

 unexpected result, since according to the model, Cagan's estimate of A and my

 maximum likelihood estimator are each consistent. The systematic difference

 in estimates as between the two estimators may reflect the inadequacy of the model.

 For Barro's data, the maximum likelihood estimates are reported in Table 3.
 For Austria and Germany, the estimated asymptotic standard errors of a are

 fairly large relative to the point estimates, while for Hungary I and Poland they

 are much smaller. As with Cagan's data, my estimate of c is much smaller than
 is Barro's for Hungary I. My estimate is somewhat smaller than Barro's for

 Poland. As with Cagan's data, my estimate of i is always smaller than Cagan's.
 The main conclusion that I draw from these estimates is that even under the

 restriction a= 0, the slope parameter c is usually poorly estimated. When to
 this is added the observations that c is not even identifiable unless ?1 is restricted
 and that economics does not seem to restrict ads the uncertainty about cc only
 increases. It seems correct to conclude that, with the possible exception of

 Hungary I, I have not been able to estimate very well the slope of the portfolio
 balance schedule.

 This is not to say, however, that the model is necessarily defective. It is cer-

 I Actually, the normality of the asymptotic distribution is conjectural. See Porter, [7].
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 THE DEMAND FOR MONEY 79

 tainly conceivable that the model approximated reality quite well even though

 a cannot be estimated well or isn't even identifiable. As pointed out in Section

 6, the proper way to test the model is to "overfit' the vector moving average,

 aUtoregressive representation (27), and to test whether the restrictions imposed by

 (27) are violated. For overfitting, -I have estimated each of the six parameteriza-

 tions reported in Table 6. For each parameterization, the chi-square statistic
 described in Section 6 was computed, and is reported in Table 7 for Cagan's

 data and in Table 8 for Barro's data. 1-igh values of the x2 statistic lead to
 rejection of the null hypothesis that model (27) is adequate.

 For Cagan's data, at the .95 confidence level, the model is rejected relative to

 parameterization 5 for Russia, relative to parameterizations 1, 2, 4, and 5 for
 Hungary 1, and relative to parameterizations 2, 5, and 6 for Austria. For Ger-

 many, Greece, and Poland, the model is not rejected relative to any of the six

 parameterizations at the .95 confidence level. For three of the hyperinflations,
 then, overfitting representation (27) does turn tip evidence that would prompt
 rejection of the model. However, it surprised me just how adequately the model

 does seem to perform relative to the six paraineterizations in Table 6. Repre-

 sentation (27) is a very stark, highly restricted parameterization; indeed, the
 systematic part of the vector autoregression has only one parameter. I had

 expected the model to be rather decisively rejected by these overfitting tests. It
 is remarkable that the model seems to survive those tests for even three of the
 hyperinflations.

 TABLE 6

 PARAMETERIZATIONS FOR OVERFITTING

 fXt XI_1 0 ait C ~111-1

 2]=cxt1 + L:]+ BL I-It 111_1 a2z a2t-1

 J, B- 7

 2. C C B [ ]

 3. r1 0 r-i b
 C= _, B=

 4. rCl ClX r-2 0

 C= , B=

 6. - i- -2 0

 C= c, B =-ib

 (1 C-i i -,2
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 TABLE 7

 CAGAN'S DATA RESULTS OF OVERFITTING -CDI SQUARE STATISTICS

 P~arameterization

 Coun,1try__ Numnber

 i l_ _ 2 3 _ 4 5 j 6

 _ 72(4) X9(1) |2(l) Z2(2) Z y2(2) 2(2)
 GERMANY |

 Oct '20-JuLly '23 .52 1.12 2.06 .95 3.37 2.14
 RUSSIA

 Feb '22-Jan '24 .21 3.05 2.84 3.90 7.79 .97

 GREECE

 Feb '43-Aug '44 1.04 1.53 .25 4.14 1.87 .40

 HUNGARY I

 Aug '22-Feb '24 4.13 7.57 3.13 7.57 7.62 .24

 POLAND

 May '22-Nov '23 .19 .04 .22 .31 .56 .53

 AUSTRIA

 Feb '21-Aug '22 2.77 4.97 .63 4.97 10.05 7.13

 Significance Levels: y2(l ).o0=-3.84 x2(2).05 =5.99
 z 2(l). O =: 6.63 x 2(2). o1:::::r =9.21

 TABLE 8

 BARRO'S DATA RESULTS OF OVERFITTING - CHI SQUARE STATISTICS

 Parameterization

 Country Numinber

 1 2 3 4 5 6

 X2 7(1) Z2(1) Z2(1) T Z2(2) X2(2) _2(2)
 GERMANY

 Feb '21-Aug '23 1.272 .382 .3 3.5 .33 0.

 HUNGARY I

 Nov '21-Feb '24 5.424 7.6 1.232 7.63 8.49 .39

 POLAND

 Feb '22-Jan '24 1.58 .528 .184 .528 .66 8.8

 AUSTRIA

 Apr '21-Dec '22 .502 3.11 .006 3.97 3.13 _0.

 Significance Levels: X2(l).o5 =3.84 X (2).os =5.99

 X 2().02s =5.02 72(2).05 =27.37
 x2(1).01 =6.63 z2(2).oO =9.21

 For Barro's data, at the .95 confidence level the chi-square statistics call for

 rejecting representation (27) relative to parameterizations (1), (2), (4), and

 (5) for Hungary I. The statistics do not call for rejection of (27) for Germany,
 Poland, or Austria.

 Notice that for both Cagan's and Barro's data, the overfitting tests reject

 representation (27) for the case of Hungary I, a case for which my estimator of

 a obtained the tightest confidence band.
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 8. CONCLUSIONS

 This paper has applied maximum likelihood techniques to derive a consistent

 estimator of a bivariate, rational expectations version of Cagan's model of hyper-

 inflation. The estimator, in principle, eliminates the simultaneous-equations,
 asymptotic bias that characterizes Cagan's estimator. Application of the maxi-

 mum likelihood estimator typically yields "loose" estimates of the slope para-

 meter of the demand schedule for money. The estimates are so loose that con-

 fidence bands of two standard errors on each side of them include values that

 would imply that the creaters of money were inflating at rates that maximized

 their command over real resources, thus maybe resolving the "paradox" with

 which I began this paper. While perhaps this resolves the paradox, it does so in

 a destructive way, by suggesting that the demand for money in hyperinflation has

 not been isolated as well as might have been thought. This is not a very satis-

 factory state of affairs in which to leave the subject. In a subsequent paper,

 I intend to describe further efforts to isolate the demand schedule for money,

 using a technique which for special reasons cannot be applied to Cagan's model.

 Use of that technique will be shown to require abandoning the assumption of
 adaptive (geometric lag, unit-sum) expectations. The technique will be shown

 to break down under the singular circumstance that the model in the present

 paper is the correct one. However, the results of my "overfitting" tests, to the

 extent that they do not always emphatically reject the model in the present paper,
 suggest that the prospects for success are not great for using such a technique.

 It could just be true that the model in this paper is the "correct" one, so that

 even though the portfolio balance schedule was exactly the one Cagan assumed,

 the nature of the money supply regimes in effect during the hyperinflations makes
 difficult or impossible estimating the slope of that portfolio balance schedule.

 University of Minnesota, U.S.A.
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