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 The Economic Journal, 9I (June 198I), 331-347

 Printed in Great Britain

 AGGREGATE LAND RENTS AND AGGREGATE

 TRANSPORT COSTS*

 This paper explores the relationship between aggregate land rents and aggregate
 transport costs for land markets in which locations differ solely in terms of
 accessibility.'

 That there exists a relationship between land rents and transport costs has
 been recognised at least since the time of von Thtinen.2 The precise relationship
 between the two is, however, not generally well-understood. For instance, until

 quite recently it was considered correct to estimate the benefits from a transport
 improvement by the induced change in aggregate land rents at those locations

 where travel costs are reduced. This procedure can be shown to be correct only in
 very special circumstances.3 This paper presents a very general characterisation
 of the relationship between aggregate land rents and aggregate transport costs. In
 some special cases, the relationship turns out to be remarkably simple: for a
 circular city with linear transport costs, aggregate transport costs are precisely
 twice aggregate land rents, independent of the distribution of tastes or income;4
 for a linear city with linear transport costs, aggregate transport costs are equal
 to aggregate land rents. One corollary of our general analysis is that aggregate

 * This paper draws on Arnott's Ph.D. thesis (Arnott, I975). He would like to thank the Canada
 Council for financial support during the period the thesis was being written. Stiglitz would like to thank
 the National Science Foundation for financial support. The comments of Ronald Grieson and two
 anonymous referees were helpful. The research reported here is part of the NBER's research programme
 in taxation. Any opinions expressed are those of the authors and not those of the National Bureau of
 Economic Research.

 1 Thus, we abstract from differences in the site-intrinsic or Ricardian characteristics of land.
 2 In the von Thunen model differences in agricultural land rents are related to the costs of transporting

 goods to the central market.
 3 The argument underlying this procedure is based on partial equilibrium analysis. If transport costs

 to all locations but one small location were to remain unchanged, then the benefits from the transport
 improvement would be correctly measured by the induced change in land rents at that location. But
 as in most instances in spatial economics, partial equilibrium analysis is inappropriate, and general
 equilibrium analysis should be applied. The incorrectness of this procedure was persuasively argued in
 an important paper by Mohring (1 96 i) twenty years ago; one still, however, comes across analyses that
 use some variant of it (Fishlow (i 965), Fogel (i 964) for instance). The conditions under which the above
 partial equilibrium argument is appropriate can be seen by considering a resident's indirect utility
 function. In a spatial economy, a resident's utility is a function of the land rent where he locates, R, his
 income net of transport costs, I, and other prices, p, so that V = V (R, I, p), where V is the indirect utility

 function. Where other prices are unaffected by the transport improvement, dV = VI dR + V2 dL From
 the properties of the indirect utility function V1 = - TV2, where T is the resident's lot size. Thus,

 dV= V2(-TdR+ dI),

 from which it follows that the benefits to this resident from the transport improvement, dI, equal the
 change in his land rents, TdR, only when dV = o. Thus, only when the transport improvement leaves
 unchanged the utility of residents at locations to which travel costs have been reduced (which will occur
 when the city is completely open, for instance) is the partial equilibrium analysis appropriate. This line
 of argument is developed further in Polinsky and Shavell (1976).

 4 Mohring (I96I) calculated the relationship between aggregate transport costs and aggregate land
 rents in a circular city with linear transport costs for the rather special case where all individuals have
 identical and fixed lot sizes. His method of analysis, summarised below in footnote i, p. 333, does not,
 however, generalise to other cases.

 [33']
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 332 THE ECONOMIC JOURNAL [JUNE

 land rents may stay the same or actually fall in response to a transport improve-

 ment which makes everyone better off.'
 In the first section we consider a simple example. The second derives the

 basic theorems of the paper, while the third examines their implications for the
 relationship between the benefits from a transport improvement and the change

 in aggregate land rents induced by the improvement. And in the fourth section,

 we examine the extent to which the theorems of section II generalise.

 I. A SIMPLE EXAMPLE

 We employ the standard residential location model but, as we shall note later,

 many of our results extend to more general models. In this model there is a single

 city centre, a point in space, at which all non-residential activity takes place.
 Land is used only for the housing of identical city residents who live at different

 distances from the city centre. If cities do not border on one another, if transport
 costs are simply a function of the crow-line distance from the city centre, and if
 land is homogeneous, then the city is circular. If, however, the whole plain is

 occupied by cities, then, under the above conditions, every city is hexagonal.2
 Later we consider cities with other geographical configurations and cities in

 which transport costs are not simply a function of crow-line distance from the city
 centre.

 The identical individuals derive utility from lot size and private goods, and

 have no preference for location per se. Trip frequency is fixed, and all transport

 costs are money costs.3 In this particular example, we assume that everyone lives
 on a lot of unit size.4 Since land is homogeneous, differences in land rents reflect
 only differences in transport costs. Specifically, if R(t) is the rent per unit area of
 land at distance t from the city centre, andf (t) are transport costs to the location,
 then

 R (t) = -ff (t), I

 where the prime indicates the derivative with respect to t. For the circular city,
 with the boundary t* from the centre, aggregate land rents (ALR) equal

 Lt*

 ALR f 1R(t) 2lrtdt. (2)

 Aggregate land rents are calculated as the rent per unit area of land at a distance

 t from the centre times the number of units of land between t and t + dt(2lrtdt),
 integrated over all t.

 1 The same result, for a somewhat different type of urban model, has been derived by Getz (1975).
 2 This result can be obtained easily for identical individuals in identical cities by application of

 theorems presented in Bollobas and Stern (1972).
 3 In Section IV, the analysis is extended to situations in which there are time as well as money costs

 involved in travel. In this case aggregate transport costs include the monetised value of the time spent
 in travel. Variable trip frequency is treated in footnote 2, p. 339.

 4 This would occur under competition if the utility function were of the form U = {0 if T <i
 C ifT T l ia

 where T is lot size and C other goods.
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 I98I] RENTS AND TRANSPORT COSTS 333

 Similarly, aggregate transport costs (A TC) equal

 t*

 A TC f (t) 27rtdt. (3)

 Integrating (2) by parts, and substituting (i), we obtain

 Pt* Lt*

 ALR-= -R'7Tt2dt+R(t*)7Tt*21 f 7Tt2dt +R(t*)7Tt*2. (4)

 The second term on the right-hand side is just the area of the city times the rent

 on marginal land; hence, the first term is differential land rents. Denoting

 differential land rents by DLR, we observe that

 DLR : A TC when fft I for all t. (5)

 f't/f is the elasticity of the transport cost function. In the special case of linear

 transport costs, differential land rents are precisely one-half aggregate transport
 costs.'

 II. BASIC THEOREMS

 This section generalises the example of the previous section in two ways. First,

 we allow for arbitrary tastes, and second we treat cities with arbitrary geo-
 graphical configurations. Residents are still identical.

 Let T(t) be the amount of land the individual at t resides on, R(t) be the rental
 price per unit area of land at t, and I(t) be income net of transport costs at t. The

 indirect utility function of the individual at t is V(R(t), I(t)). Note that since land
 is homogeneous and individuals have no preference for location per se, t does not

 enter V( ) as a separate argument. Maximisation of utility with respect to t gives

 VT1(t) R'(t) = VT2(t)f' (t) (6)

 and since -1V2(t) T(t) = V1(t), then

 R'(t)- f(t) (7) T (t)()

 We characterise the shape of the city by the function @D (t), which gives the
 residential area within a travelling distance t from the centre of the city. Thus,

 Vl (t) dt gives the residential land area between distances t and t + dt from the city
 centre. There are many geographical configurations for cities that have the same

 1 Mohring (I96I) analysed this case of a circular city with linear transport costs and uniform lot
 size. He provided an ingenious geometric explanation of this result. From (I) each person's expenditure
 on land rent plus transport costs is the same. Since each person resides on a lot of unit size, land rent

 plus transport costs are constant per unit area, k", over the settled area of the city. Consider plotting
 land rent plus transport costs per unit area on the z-axis, where the x-y plane is the homogeneous plain
 on which the city is located. The graphed figure is a cylinder with radius t* and height k". The volume
 of the cylinder is aggregate transport costs plus aggregate land rents. Aggregate land rents are given by

 the volume of a cone with the same base and height. Since the volume of a cone is one-third that of a
 cylinder with the same base and height, aggregate land rents are one-half aggregate transport costs.
 Unfortunately, this neat geometric interpretation does not extend easily to situations in which lot size

 varies with location.
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 334 THE ECONOMIC JOURNAL [JUNE

 shape according to our definition. This is illustrated in Fig. i. The amount of
 residential land area within a travelling distance t of the city centre is the same in

 both cities for all t, even though their geographical configurations are quite

 different.

 r~~~~~~~~~

 City centre City centre

 Fig. i. Two cities with different geographical configurations but the same shape.

 Proceeding as in the example, we have

 t*

 ALR = R(t) f'(t) dt

 rt*

 - R'(t) @(t) dt + R(t*) D(t*), (8)

 where t* is the furthest distance of settlement from the city centre. Combining

 (7) and (8) gives

 DLR = f T(t) [f'(t) @(t)] dt. (9)

 Aggregate transport costs are

 ATC = J (t[f(t) F(t)] dt. (IO)

 Thus, from (g) and (io),

 ATC T(t) [f (t) ?1'(t)] dt
 DLR [f'(t) t)] dt ( I)

 0T(t)
 which is the central result of the paper. Equation (i i) indicates that the ratio of
 aggregate transport costs to differential land rents depends critically on

 (fD')/(f'D). Since (f'D')/(f"(D) = [J/(f't)] [(D't)/D], this term equals the elas-
 ticity of the shape of the city with respect to distance from the city centre
 divided by the elasticity of transport costs with respect to distance from the city
 centre. Some implications of (i i) are given in the following Theorem and

 Corollaries.
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 I98I] IRENTS AND Tr'RANSPORT COSTS 335

 Theorem 1: If' & (a constant) for all t, then A TC ~- *SDLR.

 VP't
 Corollary 1: If )= fl(a constant) for all t, then

 XATC --DLR as --y forallt.

 t~~~~
 Corollary 2: If J= y (a constant) for all t, then

 A TC; I'DLR as t /f for all t.

 We now apply the Theorem and its Corollaries to a number of special cases.
 (a) If there are no natural obstacles and if cities do not border on one another,

 the city is circular, in which case q) =1t2 and V't/) = 2. Thus, from Corollary i,

 2
 ATC -DLR as for all t.

 7 1 ~~

 If, for instance, there are fixed costs and constant marginal costs associated with

 travel, then A TC > 2DLR since f 't/f < i. And in a circular city with linear

 transport costs, aggregate transport costs are precisely twice differential land
 rents.

 (b) In a linear city of width w-, 1' = fft and (P't/(I = i, and

 A TC---DLR as f forall t.
 71

 With linear transport costs, differential land rents equal aggregate transport costs.

 (c) In a hexagonal city,

 (7Tt2 for t < (13/2)t*

 86 (V3/2)t*V(t2- )+[6-cos l(j2t)Jt2i for t* > t > (V312)t*,

 where t* is the outer radius of the hexagon. For such a city, (D't/(D < 2 for all
 t with strict inequality for some t, so that

 2

 ATC < - DLR if -_ > for all t.
 7 f

 We define a city to be C-concave if q)"t < V' for all t. Such cities have the
 property that, if the city centre is a point, there is a city of the same shape for

 which a straight line joining any location in the city to the centre lies entirely
 inside the city. Similarly, a C-convex city is one for which VD"t > VD' for all t.
 Fig. 2 shows three city shapes, one C-concave, another C-convex, and another
 which is neither.
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 336 THE ECONOMIC JOURNAL [JUNE

 (d) In a C-concave city,'

 2ft
 ATC <-DLR if f Y forall t.

 (e) In a C-convex city,

 2 ftt
 ATC > DLR if y foralIt.

 7 f

 City
 centre

 (i) A C-concave city (ii) AC-convex city

 (iii) A city that is neither C-convex nor C-concave

 Fig. 2. Alternative city shapes.

 In our analysis, what is relevant is the area which can be reached with a given
 expenditure in transport costs. We may thus use the cost of transport, f, as our
 measure of distance, and may define the transport cost shape of the city, denoted by

 Q(f), to be the residential land area for which travel costs are less than or equal
 tof. Now, Q[f(t)] = I)( t). Letting Q' denote dQ/df, then Q'f' = V'. Combining
 these two results gives

 Q of _ st) f(I2)

 I V't < 1' for all t implies that

 (I'r -V) dr = V'r -2f Vdr = O't-2 < o.

 ATC T (t) [f (t) V(t)] dt fT* 2f(t) @(t) dt From (ItI), is l t* r e t*.

 DL I T [ [f `(t) @ (t) ] dt I f T (t) [f'(t) @t] dt'

 The rightmost term is less than or equal to (2/y) when ( f't/f ) y for all t.
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 I98I] RENTS AND TRANSPORT COSTS 337

 which states that the elasticity of the transport cost shape of the city with respect

 to transport cost distance equals the elasticity of the shape of the city with respect
 to travelling distance divided by the elasticity of transport costs with respect to
 travelling distance. Using (I2), one may rewrite Theorem I as

 Theorem 1': If Q/- (a constant) for allf, then ATC: 8DLR.

 This reparameterisation is useful in many applications. Consider, for instance,

 a more realistic city with a Loschian hierarchy of subcentres in which all

 individuals shop for the same bundle of goods and purchase a particular good at

 the most accessible subcentre where it is available. One may then calculate, for

 each location, annual travel costs, and hence the residential land area for which

 annual travel costs are less than or equal tof. Since one can calculate Q(Jf), this
 city with many subcentres has the same transport cost shape as a city with a single
 subcentre, unit transport costs per unit distance, and shape Q(t). Thus, our

 analysis can be applied to cities with many subcentres and a complex pattern of

 congestion.1

 III. BENEFITS AND AGGREGATE LAND RENTS

 It is important not to confuse the relationship between aggregate transport costs
 and aggregate land rents-, and the relationship between transport costs per unit
 distance and aggregate land rents. A costless transport improvement will decrease
 transport costs per unit distance, but, depending on the magnitude of the induced
 increase in lot sizes, may cause aggregate transport costs to increase, remain the
 same, or fall. Since the ratio of aggregate transport costs to differential land rents
 may be unaffected by the transport improvement, then it is quite possible for a

 transport improvement to result in no change or a fall in aggregate land rents.
 The effect of a transport improvement on aggregate land rents will depend
 critically on tastes, in particular the elasticity of substitution between land and
 other goods in consumption. Let us consider the case of a circular city with radial
 transport costs linearly proportional to distance and costless circumferential

 transportation, in which city residents have identical Cobb-Douglas utility

 1 In this footnote we present another application of the transport cost shape of the city. Consider a
 circular city in which travel to any location from the centre of the city requires travelling first along the
 single radial road, and then along a circumferential road (which is a constant crow-line distance from
 the city centre). Travel along the radial road is costless, and transport costs are equal to circumferential
 distance from the radial road. The transport cost shape of this city is shown below to be

 f) -4 (rf_ f) f A< rr (i)

 where r is the radius of the city. SincefQ' < Q for allf, then from Theorem i', DLR > A TC.
 (i) is derived as follows. Divide the city into four symmetric quadrants, each with the radial road as

 its base. Consider one of these. Travel costs to all locations subtended by an angle 0 of less than or equal
 to f/r radians should be included in Q(f). This area equals fr/2. For IT/2 > 0 > f/r, transport costs
 exceedf for r > f1/0. Thus, we should integrate r only from o tof/0 for or/2 > 0 > f/r. The value of
 this area isfr/2 -f2/7T. Hence, Q(f) = 4(rf- f2/1r).
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 338 THE ECONOMIC JOURNAL [JUNE

 functions and in which the opportunity rent on land is zero.' We assume too that

 the transport improvement results in an equi-proportional reduction in travel

 costs at all locations.

 It is characteristic of the Cobb-Douglas utility function that the ratio of each
 individual's expenditure on land to his expenditure on the private good is con-

 stant. It follows, since individuals have identical tastes, that aggregate expendi-

 ture on the private good is a constant proportion of aggregate land rents. We also

 know from Theorem I that for such a city, when the opportunity rent on land in

 non-urban use is zero, aggregate transport costs equal twice aggregate land rents.

 Thus, aggregate expenditure on the private good is a constant proportion of

 aggregate land rents. Aggregate income from production, we assume, is un-

 affected by the transport improvement. Putting these results together, we have

 that aggregate land rents, aggregate transport costs, and aggregate expenditure

 on other goods are unaffected by the transport improvement. Thus, reduction in

 unit transport costs leads to more land consumption and the same aggregate

 expenditure on transport costs and land rents.2

 Since aggregate land rents may, in general, rise, remain the same, orfall in response to a

 transport improvement, the induced change in aggregate land rents by itself is, except under

 conditions very unlikely to be satisfied, an incorrect measure of benefits from the transport
 improvement. The change in aggregate land rents from a transport improvement is,

 however, relevant in evaluating the improvement if one is concerned with the

 welfare of renters vis-a-vis landowners.

 IV. EXTENSIONS

 I v. I. Differences between individuals

 The analysis of section II extends straightforwardly to economies with hetero-

 geneous residents. Letf (t'; t) be the travel costs of the individual who lives at t of

 travelling from the city centre to t', and T(t'; t) be the lot size that would be

 demanded by the individual who lives at t in equilibrium if he were forced to live
 at t'. Utility maximisation requires that

 T f(t; t) (I 3)
 T(t; t)'

 where f1(t; t) = [ fa t)] (8) still holds. Substitution of (I3) into (8) gives

 DLR = T(t;t)[f1(t; t) 'D(t)] dt, (9')

 1 To circumvent the conceptual problems associated with the boundary resident consuming an
 infinite amount of land because of its zero rent, we may assume instead that the opportunity rent on
 land is positive but arbitrarily small.

 2 A transport tax has the same effects as a negative transport improvement, when the disposition of
 revenue is ignored. Thus, in this economy, the incidence of a transport cost tax is entirely on consumers.
 Aggregate land rents remain the same; some landowners near the city centre benefit, but their gains are
 precisely offset by losses to landowners further out.
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 I98I] RENTS AND TRANSPORT COSTS 339

 and

 Lt*I

 ATC Jo T(t; t) [f(t; t) @'(t)] dt

 DLR TC T (I t
 DL I(t t [fi (t; t) ID(t) ] dt

 Equation (i I') indicates that Theorem i and its Corollaries carry through with

 the modifications thatf(t) is replaced byf(t; t) andf'(t) byf1(t; t).
 Letf(t) be the equilibrium transport cost function, which gives for each t the

 transport expenditures of the individual who locates at t in equilibrium.
 Equation (i i') shows that what is relevant to the determination of A TC/DLR is
 the elasticity of each individual's transport cost function at his equilibrium

 location [f1(t; t) t] /[f(t; t)] and not the elasticity of the equilibrium transport
 cost function [J'(t) t]/[f(t)].

 To clarify the point, imagine the following scenario. The city is circular and

 each individual's transport cost function is linear in distance, with costs per mile
 depending on income. Tastes are such that, in equilibrium, the rich live closer
 to downtown. And the distribution of income is such that the transport expendi-
 tures incurred by the equilibrium resident at each location are equal.' Thus,

 [fi(t; t) t]/[f (t; t)]- i while [j'(t) t]/[J(t)] = o.Application of (i i') indicates
 that in this city A TC = 2DLR since each individual's transport costs are linear in

 distance even though equilibrium transport costs are invariant with location.

 More generally, in a circular city, as long as all individuals have linear transport
 costs, even though they may differ in tastes, incomes, and transport costs, it is
 still true that aggregate transport costs are precisely twice differential land rents.

 I V.2. Time and money costs of travel, etc.

 It is easy to show that the results of section II generalise to the case where trip
 frequency is variable, where f(t) is interpreted as costs per trip.2 They also
 generalise straightforwardly to the situation where there are both time and money
 costs of travel. Suppose that to travel to t requires not only an expenditure of
 money,f(t), but also an expenditure of time, g(t). Time not spent travelling goes
 towards leisure L or work W, which yields income Y( W). The resident's maxi-
 misation problem is therefore

 max U(C, T,L, W)s (i) Y(W) = C?R(t) Tf(t)
 (C,T,L,W,t) W t(ii) I = L+g(t) + W.

 1 For this to be possible, residential settlement must start at some distance from the city centre.
 2 Let f(t) be the cost per trip at t, and n(t) be the trip frequency chosen by the person at t (who

 maximises U(C, T, n) s.t. Y = C+ R(t) T+ nf(t)). The first-order condition of the resident's maximisa-
 tion problem with respect to t is - nf' = R'T, and the counterpart to (i i) is

 1t* n(t)

 ATC Jo T(t) [f (t) V'(t)] dt
 D5LR St* n(t) ['t () t

 o T f(t) bt]d
 Thus, the results of Section II still hold with variable trip frequency iff (t) is interpreted as costs per
 trip rather than overall transport costs.
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 340 THE ECONOMIC JOURNAL [JUNE

 If A and 0 are the shadow prices on the two constraints respectively, then the

 equation corresponding to (7) is

 -RI (t) = It [f (t) + 0(t) 9 I(t)] (14)
 [0(t) /A(t)] is the shadow value of time at t, which varies over locations. Proceeding

 as before, one obtains that the equation corresponding to (i i) is

 ,t*

 A TC J IT(t) ({(t) + [61(t) /A (t) ] g (t)} @'(t)) dt
 DL t* (I5)
 DLR J= [i/T(t)] ({f'(t) +[O(t)/A(t)]g'(t)}'1D(t)) dt

 It follows immediately from (I 5) that Theorem I and its Corollaries go through
 with only minor modifications. For instance, one obtains that:

 Where 6 is a constant, if both > 6' and g D - a for all t,

 then A TC - 6'DLR.

 Hence, if travel time and money expenditure on transport are both linear in

 distance and if the city is circular, then it is still the case that 2DLR = A TC.
 This is true even if total monetised transport costs, f(t) + [0(t)/A(t)] g(t), are
 not linear in distance.

 A possible objection to our analysis thus far is that we have ignored housing
 and its durability. The analysis does in fact generalise to cities with housing. In
 the long run, land and structure rent may be separated and the presence of
 structures on the land does not affect our propositions. In the short run, land and
 structure rent are not separable; we refer to their sum as housing rent. In this
 case, the analysis must be reformulated in terms of the relationship between
 differential housing rents and aggregate transport costs, and our earlier theorems

 are applicable.'

 1 We first consider the relationship between differential housing rents (DHR) (which are defined
 analogously to differential land rents) and aggregate transport costs. We then show that when housing
 rent is separable into structure rent and land rent, the presence of housing on the land does not effect the
 propositions developed relating A TC and DLR.

 We assume that vertical transport costs are zero, and that individuals care only about the floor space
 of their housing, so that housing is naturally measured in units of floor space. The results generalise to
 more sophisticated treatments of housing.

 Let r(t) be the amount of housing within a distance t of the city centre which we shall refer to as the
 housing shape of the city, p(t) be rent per unit of housing, and H(t) be the number of units of housing
 occupied by the resident at t. Since the individual now derives utility from housing rather than land,
 the individual's maximisation problem is:

 max U(C, H) s.t. Y = p(t) H+f (t) +C.
 t, C, H

 Proceeding as before, one obtains that the equation corresponding to (I I) is

 A TC _ Jo H (t) rt]d

 DHR Jt- t [f'(t) r(t)]dt

 The results of Section II generalise. The elasticity of the shape of the city is replaced by the elasticity

 of the housing shape of the city, r(t) , and DLR is replaced by DHR. continued on next page
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 I98I] RENTS AND TRANSPORT COSTS 34I

 IV.3. Generalisation to higher dimensions

 Thus far we have assumed that urban residents are unanimous in their ranking

 of locations in terms of accessibility, so that location may be parameterised by

 a single variable, some index of accessibility. However, individuals may judge

 differently the relative accessibility of two locations. For instance, one may be
 indifferent between two commuting trips, one of which costs $i and takes

 I 5 minutes, while the other costs $0.5o and takes 20 minutes. Another individual
 who values his time less may be indifferent between the trip which costs $i and

 takes 15 minutes, and another which costs $0.50 and takes 30 minutes. In such

 cases, one needs two variables to characterise a location.

 Equal-accessibility contour
 -individual (class) I

 << ~~~City centre

 Equal-accessibility contour
 -individual (class) 2

 Fig. 3. Location must be indexed by two variables when individuals' equal
 accessibility contours do not coincide.

 This can be seen from Fig. 3, which shows an equal accessibility contour for

 two different individuals. If one were to index locations according to individual

 I's travel costs,fl, one could not write down individual 2's transport cost function,
 since for different locations with the same value off' his transport costs would be
 different. Similarly, if one were to index locations according to individual 2's
 travel costs, one could not characterise individual I's transport costs. One can
 however characterise both individuals' transport cost functions using two co-
 ordinates to describe location.

 In section II the analysis was considerably simplified by employing the concept

 of the shape of the city. This allowed us to transform any city with a complex
 geographical configuration into another city, equivalent for the purpose of
 analysis but with a simple shape. Furthermore, the shape of the city was defined in

 such a way that rent was the same everywhere along the boundary, as a result

 cont. from page io

 When housing rent is separable into land and structure rent, the individual's maximisation problem
 may be written alternatively as

 max U(C, H) s.t. Y = R(t) T+?i(u) H+f (t)+C,
 t, H, T, C

 where H is structures, and p(,t) is structure rent as a function of structural density ( =_ H/T). From
 this formulation, it follows that the results of Section II carry through when housing is on the land, as
 long as housing rent is decomposable; otherwise, differential land rents are not well-defined.

 I2 ECS 91
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 of which there was no ambiguity in defining differential land rents. Unfortu-

 nately, this technique of simplification is not possible when residents rank loca-

 tions differently in terms of accessibility. One must work instead with the actual
 geographical configuration of the city. In this case, land rents may not be the

 same everywhere along the (physical) boundaries of the city, and differential
 land rents may in consequence be hard to define.

 We shall treat two cases in turn, first that where land rents are everywhere the

 same along the boundaries of the city, and then that where they are not.

 IV.3. i. Land rent the same everywhere along the boundaries of the city

 We shall parameterise locations using Cartesian co-ordinates, x and y, with (o, o)

 being the city centre (or the central business district in the case of a multi-
 nucleated city). Letf (x', y'; x, y) denote the transport costs of the individual who
 lives at (x, y) in equilibrium of travelling to (x', y'), and let

 fx (xY; x,y) a [f(xt,y'; x,y)]

 withf,(x, y; x, y) defined accordingly. It is shown in the Appendix that'

 DLR c 'A TC if fx(x, y; x, y) x +fY(x, y; x, y) y cf(x, y; x, y), for all (x, y).

 Defining t = [x y] (a column vector) and Vf = [fx(x,y; x,y) fy(x,y; x,y)]
 (a row vector), one may write the above result more compactly as

 DLR --'ATC if Vf't cf forall t. (i 6)

 Vf't/f is the two-dimensional analog to {[f1(t; t) t]/[f (t; t)]}.
 It may at first glance appear puzzling that (i6) contains no terms reflecting

 the geographical configuration of the city. The reason is that when rents are the

 same everywhere along the physical boundaries of the city, the geographical configuration
 of the city is determined by the transport costfunction. In illustration, we consider cities
 with two classes of residents, I and 2, where the transport cost function of the
 class i is

 fi (x, y) = ai xx + bi yx, for i = I 2,

 with b, * b2, a, * a2, and (a1/bl) * (a2/b2).2 Furthermore, we assume that, in
 equilibrium, residents of both classes live at some locations along the boundary

 of the city. Fig. 4.i illustrates a possible geographical configuration when ac- I,
 Fig. 4.ii one when ac < I, and Fig. 4.iii one when c > I. To see how these are
 derived, we treat the case c = I. When c = I each class's equal-accessibility
 contours are diamond-shaped, as shown in Fig. 3. Since rents are the same

 everywhere along the boundary, then in equilibrium all class I residents living
 on the boundary must be located on the same class I equal-accessibility contour,

 1 The mathematics employed in the Appendix is somewhat more complex than that employed in the
 rest of the paper. The Appendix can be skipped without loss of continuity.

 2 With this transport cost function, Vf't 2f as a which implies from (I6) that DLR t iATC
 as a I.
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 I981] RENTS AND TRANSPORT COSTS 343

 C'; similarly, all class 2 residents living on the boundary must be located on the
 same class 2 equal-accessibility contour, C2. Since land goes to the class which

 bids more for it, the boundary of the city is the outer envelope of C' and C2.1
 The factor of 1 in (i6) indicates that in any city where rents are the same everywhere

 along its physical boundaries, the elasticity of the shape of the city (or its two-dimensional

 generalisation) is two. Two examples may help to clarify this remarkable result:
 (a) For a city in which travel distance is crow-line distance and in which travel

 to all locations an equal travel distance from the city centre is equally costly,
 residents' equal-accessibility contours coincide and are circular. If rents are
 everywhere the same along the boundary of the city, the boundary coincides with

 an equal-accessibility contour. Thus the city is circular and OVt/@D = 2.

 City
 centre

 (i) Linear transport costs (a - 1) (ii) Decreasing cost to travel

 in both directions (at < 1)

 (iii) Increasing cost to travel in both directions (a > I)

 Fig. 4. Possible geographical configurations for cities when individuals
 rank the accessibility of locations differently: grid road systems.

 (b) For a city like that in (a) except that there is a grid-road system, equal-
 accessibility contours and the boundary of the city arc diamond-shaped. In such
 a city the area withiri travel distancc 2t of the city centre is four times that within

 1 Suppose the equal-accessibility contours in Fig. 3 are C' and C2. From the definition of C1, an
 individual in group I is willing to bid R (the opportunity rent on land in non-urban usc) per unit-area
 for any location on C'. Furthermore, this individual is willing to bid less than R per unit area for any
 location outside C' since it is less accessible than any location on Cl. Now consider the location Z in
 Fig. 3. An individual from class 2 is willing to bid R per unit arca for land there, since Z is on C2.
 An individual fiom class I is not willing to bid as much as R per unit area for land there since Z is
 outside Cl. Thus, the land at Z goes to an individual in class 2 and is on the boundar y of the city since
 the maximnurn residential bid-rent there is R.

 12-2
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 travel distance t and eD't/eP = 2. The theorem is also evidently true for those cities
 shown in Fig. 4.

 To recapitulate, we now consider a city with the following characteristics.

 It has a grid road system and an opportunity rent on land which is everywhere

 the same along the periphery of the city. There are n groups of residents, where n
 may be any integer number. Group i's transport costs per unit distance in the

 x-direction are ai and in the y-direction bi. The ais differ by group, as do the bis
 and the ai/bis. Thus, each group ranks locations in terms of accessibility
 differently from every other group. This could occur if, for instance, travel in

 one direction were slower than in the other, and if the shadow value of time

 varied by group while money expenditures did not. For each group at each

 location Vfi't =fP. Fromthedefinitionoff, itfollowsthatVf't =f, and from (i6)
 that DLR = 'ATC. Thus, even in this rather complex and quite realistic city,

 there is a simple relation between DLR and A TC.

 IV.3.2. Land rent not the same everywhere along the boundaries of the city

 When land rent is not the same everywhere along the boundary, the question

 arises as to what is the appropriate opportunity rent on land in non-urban use to

 employ in computing differential land rents. We shall pose the question somewhat

 differently. Is there a reasonable definition of differential land rents that results
 in the theorems of the paper holding where (i) land rent is not the same every-

 where. along the physical boundary of the city, and (ii) residents do not rank
 locations equally in terms of accessibility? Rather strikingly, the answer is in the

 affirmative. If we define the opportunity rent on land at a location (r, 0), measured in polar

 co-ordinates, to be land rent at the boundary of the city in the direction 0, then (16) remains

 valid.1 The proof is in the Appendix.

 V. CONCLUDING REMARKS

 This paper had two central objectives:

 The first was negative, to show that the commonly employed practice of

 inferring the benefits from a transport improvement from the changes in land

 rents induced by that improvement is generally not correct and may be seriously

 misleading. In one special case we examined, for instance, aggregate land rents

 are unaffected by a proportional change in transport costs to all locations.
 The second was positive, to show that there are nevertheless some remarkably

 simple relationships between differential land rents and aggregate transport

 costs. For instance, in a circular city with linear transport costs, the former is
 exactly one-half the latter. Moreover, these relationships hold with remarkable

 generality; individuals can differ in tastes, incomes and transport cost functions,
 and the results are still valid.

 Aggregate land rents and aggregate transport costs are only two of the

 1 The definition can be modified to treat cities with holes in them.
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 important urban economic aggregates. In a companion to this paper (I 979) we

 show that there is also a simple relationship between aggregate land rents and

 expenditure on public goods.'

 Queen's University, Canada RICHARD J. ARNOTT
 Princeton University, U.S.A. JOSEPH E. STIGLITZ

 Date of receipt offinal typescrizpt: November 1980

 APPENDIX2

 To prove: that DLR c 2A TC if Vf't t f
 The proof is facilitated by using polar co-ordinates, in which r denotes the

 crow-line distance from the city centre and 0 the angle from the city centre in
 radians. To simplify the analysis we assume that there are no 'holes' in the city,
 namely at all locations in the city, a straight line joining the location to the city

 centre passes across only residential land. The proof can be extended to cities
 with holes.

 Aggregate land rents are

 ALR [ R R (r, 0) rdr d, (Ai)

 where R(r, 0) is land rent at (r, 0), and f(0) is the distance to the boundary in the
 direction 0.

 Integration of the term in square brackets in (Ai) by parts gives

 2w7 {2 F(0) ir(O) r2

 ALR= f {[R(r, 0) ] Rr(r, 0) - dr dO

 2r r{0)2 29 r(O) 0 r2dro
 fR [(0) 0] 2' d0- f Rr(r,0) drd0, (Aii)

 where

 Rr(r,0) aR(r, 0)

 When land rent is the same everywhere along the boundary, R, the first term
 on the right-hand side of (Aii) is this rent times the area of the city. When land
 rent is not the same everywhere along the boundary, and if we define the

 opportunity rent of land at (r, 0) to be the land rent at the boundary of the city
 in the direction 0, then the first term on the right-hand side of (A ii) is the

 1 There are a number of interesting extensions to the analysis. First, the theorems should extend to
 cities with industrial, commercial, etc. as well as residential urban land. Second, it would be useful to
 investigate how the relationship between aggregate transport costs and differential land rents is affected
 when locations differ not only in their accessibility, but also in their Ricardian characteristics such as
 soil fertility and quality of the microclimate. Third, one would like to know whether the actual ratio of
 differential land rents to aggregate transport costs is close to that indicated by the theorems presented
 in the paper.

 2 We would like to thank Jim Mirrlees for assistance in deriving this generalisation.

This content downloaded from 
�������������149.10.125.20 on Wed, 19 Jan 2022 15:19:01 UTC������������� 

All use subject to https://about.jstor.org/terms



 346 THE ECONOMIC JOURNAL [JUNE

 aggregate opportunity rent on land in the city. In both cases, the second term on

 the right-hand side of (Aii) is, by definition, differential land rents; i.e.

 DLR= Rr(r 0) drd. (Aiii)

 Define T(r', 0'; r, 0) to be the lot size that the individual located at (r, 0) would
 choose if he were forced to live at (r', 0'), andf (r', 0'; r, 0) to be the analogously
 defined transport cost function for the individual located at (r, 0) in equilibrium.
 From residents' utility-maximisation problems, with location characterised in
 polar co-ordinates, one obtains

 fr(r, 0; r, 0) +Rr(r, 0) T(r, 0; r, 0) = (Aiv)
 where

 Of [(r, r, )]
 Substitution of (A iv) into (A iii) gives

 DLR = I f(r, 0 ) - -drd0. (A v) Jo 0 T(r,0;r,0) 2

 Aggregate transport costs in polar co-ordinates are

 A TC f (r,0; r,0) rdrd. (Avi)
 JT T(r, 0; r, 0)

 Comparison of (Av) and (Avi) gives

 DLR 2 12A TC if Arrf for all (r,0). (Avii)
 One transforms from polar to Cartesian co-ordinates by using the relationships

 x = r cos 0 and y = r sin 0. Thus, where f(x', y'; x, y) is an individual's transport
 cost function in Cartesian co-ordinates,

 f (x', y'; x, y) = f (r' cos 6', r' sin 0'; rcos 0, rsin 6).
 Also,

 f(x, y; x, y) [f (r' cos 6', r' sin 0'; r cos 0, r sin 0) /Or'](r )

 =f,(x, y; x, y) cos 0 +f,(x, y; x, y) sin 0, (Aviii)

 wheref (x, y; x, y) [af(x', y'; x, y) /ax']( y) andf, is defined accordingly. Using
 x = r cos 0 and y = r sin 0 again, one may rewrite (Aviii) as

 fr =![fx(x,y; x,y)x+f (x,y; x,y)y],

 or frr =fxx +fyy. (Aix)

 Now) (x, y; x, y) =f(r, 0; r, 0), and fr(x, y; x, y) =J (r,; r, 0). Thus,frr ]r.
 Too, fx x+fyy _ Vf't where Vf = [fx fy] and t = [x y]. Combining these
 results, (Aix), and (A vii) gives

 DLR I 'A TC if Vf't 2f for all t, (Ax)

 which is the result presented in the text.
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 I98I] RENTS AND TRANSPORT COSTS 347

 Where land rent is not the same everywhere along the boundary of the city
 with other reasonable definitions of differential land rents, (i 6) does not obtain.
 For instance, if the opportunity rent on land in non-urban use is defined as the
 minimum rent on land at the boundary of the city, R, then, where DLR denotes
 differential land rents according to this alternative definition,

 2w7 (0) 2 2?r r(8 ) r 2
 DLR =(J){R[r(6) } 6 do - Rr(r,0) -drdO

 2 JJ02

 l() 2Cd2o C )fr(r, 0; r 0)r2 (2f{R [i (6O) 01]- RI2 dTi 'r -;rO drdO, (A xi)

 (A vi) still applies. Thus, the relationship between A TC and DLR is not as simple
 as that between A TC and DLR.

 The central results derived in this Appendix and in the main body of the paper
 are essentially geometric. There are analogous results for higher dimensions.
 We do not present them since their economic importance is not apparent.
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